The Role of Parvalbumin, Sarcoplasmatic Reticulum Calcium Pump Rate, Rates of Cross-Bridge Dynamics, and Ryanodine Receptor Calcium Current on Peripheral Muscle Fatigue: A Simulation Study
نویسندگان
چکیده
A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model's original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model's parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue.
منابع مشابه
Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease.
Mammalian skeletal muscle shows an enormous variability in its functional features such as rate of force production, resistance to fatigue, and energy metabolism, with a wide spectrum from slow aerobic to fast anaerobic physiology. In addition, skeletal muscle exhibits high plasticity that is based on the potential of the muscle fibers to undergo changes of their cytoarchitecture and compositio...
متن کاملSarcoplasmic Reticulum Ca ATPase (SERCA) 1a Structurally Substitutes for SERCA2a in the Cardiac Sarcoplasmic Reticulum and Increases Cardiac Ca Handling Capacity
Ectopic expression of the sarcoplasmic reticulum (SR) Ca ATPase (SERCA) 1a pump in the mouse heart results in a 2.5-fold increase in total SERCA pump level. SERCA1a hearts show increased rates of contraction/relaxation and enhanced Ca transients; however, the cellular mechanisms underlying altered Ca handling in SERCA1a transgenic (TG) hearts are unknown. In this study, using confocal microscop...
متن کاملTraining effects on skeletal muscle calcium handling in human chronic heart failure.
PURPOSE Patients with chronic heart failure (CHF) typically complain about skeletal muscle fatigue. In rat experiments, reduced intracellular calcium release seems to be related to fatigue development in normal skeletal muscle but not in muscle from rats with CHF. We therefore hypothesize that training may not improve intracellular calcium cycling to the same extent in muscles from patients wit...
متن کاملVariation in expression of calcium-handling proteins is associated with inter-individual differences in mechanical performance of rat (Rattus norvegicus) skeletal muscle.
An important constraint on locomotor performance is the trade-off between sprint and endurance performance. One intuitive explanation for this trade-off is that an individual muscle cannot excel at generating both maximal force/power and high fatigue resistance. The underlying reasons for this muscle trade-off are poorly defined. The aim of this study was to test the hypothesis that inter-indiv...
متن کاملHow well do muscle biomechanics predict whole-animal locomotor performance? The role of Ca2+ handling.
It is important to determine the enabling mechanisms that underlie locomotor performance to explain the evolutionary patterns and ecological success of animals. Our aim was to determine the extent to which calcium (Ca(2+)) handling dynamics modulate the contractile properties of isolated skeletal muscle, and whether the effects of changing Ca(2+) handling dynamics in skeletal muscle are paralle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016